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AbItnc:t-lt is shown that a general form of the bilinear functional in conjunction with classical concepts of
thermodynamics leads to the results not admitted by the particular form commonly used in the literature.
The conservation theorem for a wide class of continuous bodies is established. A generalized Lasrangian
function for linear dissipative materials is introduced. Two specific examples: problem of elastodynamics
and problem of thermoelasticity are selected in order to illustrate the proposed approach.

I. INTRODUCTION

The paper is an attempt to provide a uniform mathematical basis for construction of the
conservation theorems for a wide class of problems of continuum mechanics. The motivation
for studying the conservation theorems is their direct application to the theory of defects and in
particular to the fracture mechanics. A brief account of the progress in this field was presented
by G. Herrmann[l] and A. Golebiewska-Herrmann[2].

A primary interest of the author was to investigate the conservation theorem constructed
formally for thermoelastic body by G. Herrmann[l]. The construction was possible due to the
convolution with respect to time which replaced the classical mUltiplication of the ther
modynamical flux and force. The idea of such convolution bilinear functional, primarily
introduced by Schapery[3] and later independently by Gurtin[4] appeared to be a breakthrough
in the search for variational principles in continuum mechanics. An account of the development
in this search, indicating the contributions of Parkus, Biot, G. Herrmann, Ben-Amoz, Nickell,
Sackman, Rafalski, was presented by Parkus [5]. Further investigations of the convolution
bilinear functionals resulted in the construction of the minimum principles for heat conduction,
thermoelasticity and viscoelasticity by Rafalski and later independently by Reiss and Haug (see
[6]).

The usefulness of the convolution bilinear functional in G. Herrmann's construction of the
conservation theorem encouraged the author to propose a more general approach to the
problem. Namely, in the present work a class of bilinear functionals, which can be used to
construct the conservation theorem, is introduced. For every functional from this class the
corresponding thermodynamic flux and thermodynamic force are defined.

It should be emphasized that the basic concepts of thermodynamics are used here in
conjunction with an appropriate class of bilinear functionals, which does not necessarily
contain the classical bilinear functional. This class is determined by the type of the continuum
mechanics problem. Consequently the proposed approach provides us with a set of distinct
definitions of the thermodynamic flux and force for a specified problem of continuum
mechanics.

It follows from Section 2 of the present work that the specification of the constitutive law,
i.e. the relation between the thermodynamic flux and the thermodynamic force, is not necessary
to construct the conservation theorem. However one can use the constitutive law to obtain a
more convenient form of the conservation theorem, expressed in terms of the displacement
fun"tion only. The construction of such conservation law has been already given by A.
Golebiewska-Herrmann[2] for the materials which admit a Lagrangian. Actually, this important
work stimulated the author to investigate the relations between the Lagrangian function, the
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variational principles and the conservation theorems. The original idea of the differentiation of
the Lagrangian function with respect to the space and time coordinates proposed in [2] to
obtain the conservation theorem is used here in the form of a skew-symmetric operator M.

A general form of the bilinear functional introduced in the present work in conjunction with
the classical concept of the Lagrangian leads to the notion of the Lagrangian-like function. Now
the material behavior within the considered space-time interval is uniquely determined by the
pair: the particular bilinear functional and the corresponding Lagrangian-like function. Con
sequently for given material behavior we have, in general,. several distinct Lagrangian-like
functions corresponding to distinct bilinear functionals.

The Lagrangian-like function generates directly a variational principle equivalent to the
appropriate boundary value problem for the considered body. It is interesting that the choice of
the bilinear functional determines the type of the initial-boundary conditions appearing in the
boundary value problem.

In order to illustrate the new approach proposed in the work we present four distinct
Lagrangian-like functions for the problem of elastodynamics, which admits classical Lagrangian
function, and one particular Lagrangian-like function for the problem of thermoelasticity, which
does not admit a Lagrangian.

2. BASIC CONSER VATION THEOREM

We consider a continuous body which occupies sufficiently regular region V within the time
interval [0, to] We denote by rp(x, t) the generalized displacement function defined in the
space-time region V x [0, toJ. We use the concept of the thermodynamic flux U determined by
the displacement function with the relation

U(x, t) = Qrp(x, t) (1)

where Q is a linear differential operator, and the concept of the thermodynamic force T
conjugated to the flux U with a bilinear form [U 0 T]. The bilinear form introduced above is
assumed to map a pair of functions U(x, t), T(x, t) into a scalar function [U 0 T](x, t) defined in
the region V x [0, to]. The bilinear form determines the bilinear functional

(U, T)== fvfo[UoT](X,t)dtdV (2)

which maps this pair of functions into a real number.
The operator Q and the bilinear functional uniquely determine the adjoint operator Q*, the

boundary operator QB == [QBI, QB2] and the initial operator QI == [QIl , QI2]. The definition of
these operators follows from the identity obtained with the appropriate integration by parts of
the bilinear functional (Wcf>' T). The identity takes the form

(Qcf>' T) - ('I', Q*T) = tfo
OQB[rp 0 T](x, t) dt dB

+f)QI[rpoT](x,t)I~OdV (3)

where B is the boundary of the region V and n == [nb nz, n3] is the unit vector normal
to B and taken as positive outwardly. Here we introduced the following notation

QB[rpO T](x, t) = £OBIII' 0 QBZT](X, t)

QI[rp 0 T](x, t) = £OIllp 0 QI2 T](x, t), (4)

i.e. the differential operators with superscript 1 are applied to the displacement functions and
the differential operators with superscript 2 are applied to the force functions.
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In the present work we shall assume that the equation

Q*T(x, t) = 0 in V x [0, to)
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(5)

expresses the equilibrium condition for the considered body. This assumption restricts the class
of bilinear functionals which can be used in further considerations as well as the set of
differential operators Q, which can determine the thermodynamic flux.

In order to construct the conservation theorem we introduce an auxiliary linear operator M,
which is skew-symmetric with respect to the bilinear functional, i.e. M* = -M. Using the
notation introduced above we can write the following identity for the operator M

(MU, T)+(U, MT) = tL'° nMB[U 0 T](x, t)dt dB +Iv IMI[Uo T](x, t)l~dV (6)

where

M B[U 0 T)(x, t) = [MBI U 0 MB2 T](x, t)

M I [ U 0 T)(x, t) = [MIl U 0 M 12 T)(x, t).

We shall consider a class of skew-symmetric operators M such that the equality

MQ~(x, t) = QM~(x, t)

(7)

(8)

holds true for arbitrary displacement function ~(x, t).
Let ~a denote the actual displacement function and let T a denote the actual force function

in the considered body. Since the actual force satisfies the equilibrium condition the relation (3)
implies

(9)

for arbitrary displacement function ~(x, t). On the other hand taking into account that the
actual flux function Ua(x, t) is kinematically admissible (Le. it can be derived from the
displacement function: ua = Q~a) we obtain from (3)

for arbitrary force function T(x, t) which satisfies the equilibrium condition Q* T = O.
Substituting the particular functions ~ and T

~(x, t) = M~a(x, t)

T(x, t) = MTa(x, t)

(10)

(11)

into relations (9) and (10) and taking into account the properties (6) and (8) of the operator M
we arrive at a general form of the conservation theorem which states that the actual displace
ment function ~a and the actual force function Ta satisfy the equation

JB fO n {QB[M~a 0 p +~a 0 MTa)(x, t) - M B[Q~a 0 P](x, t)} dt dB

+JvIQI'[M~a 0 Ta +~a 0 MTa](x, t) - M I[Q~a 0 P](x, t)lf/' dV = O. (12)

It should be noted that the conservation theorem (12) has been derived independently of the
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constitutive law, which describes the material behavior. Indeed, in the present section we have
used only the kinematic relation (1) and the equilibrium condition (5). The constitutive law in
the form of a relation between the force ra and the flux U a makes it possible to express the
conservation theorem in terms of the displacement function q;a only. Such conservation law
will be constructed in the next sections of work.

3. LAGANGIAN-LIKE FUNCTION AND

VARIATIONAL PRINCIPLE

The classical thermodynamics finds it convenient to assume that the relation between the
force T and the flux U can be determined by the Lagrangian L( U) which maps the value of the
flux function at certain point x, t of the space-time into a real number. It is assumed that the
scalar function L(U) is differentiable with respect to U and that the constitutive law is
expressed in the form

T= aL
au (13)

where T is the value of the force at x, t and the differentiation is carried out with respect to the
scalar product U· T. The relation (13) is equivalent to the statement that for every flux U there
exists unique force T such that the equality

lim L( U + AW) - L( U) = W. T
A-+O A

(14)

holds true for arbitrary flux W
The classical assumptions presented above are so restrictive that for many important

material models the Lagrangian L( U) cannot be constructed. In particular the Langrangian does
not exist for materials which dissipate the mechanical energy such as the thermoelastic
material.

In the present paper we extend the class of materials which admit a Lagrangian by
relaxation of the mathematical assumptions imposed in the classical approach. Namely, we
assume that there exists an operator L which maps the flux function U(x, t) into a scalar
function [L( U)](x, t) defined in the region V x [0, tol, such that the force function T(x, t)
corresponding to U(x, t) satisfies the equality

I· ;£( U +AW) - ;£(U) =(W T)
1m I ',-0 It

for arbitrary flux function W(x, t). Here the functional ;£ is defined by

;£( U) = Iv LO [L( U)](x, t) dt d V

(15)

(16)

and (W, T) denotes the bilinear functional (2) introduced in the previous section. To avoid possible
confusion we shall call [L( U))(x, t) the Lagrangian*like junction.

In the sequel the constitutive law (15) will be presented in the form

T= a;£
au (17)

where the right hand side is the Gateaux derivative with respect to the bilinear functional (2).
The constitutive law in the form (17) leads directly to a variational principle corresponding

to the appropriate boundary value problem. In order to formulate such boundary value problem
we introduce the displacement function q;O(x, t) prescribed in the region V x [0, to] and the
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corresponding force function 1"'(1, t) satisfying the relation
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(18)

We also introduce the space Ho of aU displacement functions f/i(I, t) which vanish on the
boundary. Here the function 1/1(1, t) is said to vanish on the boundary if it satisfies the equations

QB[tf1 0(1"' - T)](I, t) = 0 on BX[O, toJ

QI [1/10(1"' - DJ(I,t) =0 in V for t =0 and t = to (19)

where the force function T(x, t) is determined by f/i(x, t) with

(20)

Now we can formulate the boundary value problem as follows:
Find the displacement function <pa which satisfies the boundary conditions determined by the
prescribed function <po, i.e. the function <pa which can be expressed in the form

<pa = <po - 1/1 where 1/1 belongs to Ho

such that the corresponding force function Ta determined by the constitutive law

Ta _ a!ll
- au U=Q<p"

satisfies the equilibrium condition

Q* Ta(x, t) =0 in V x (0, toJ.

(21)

(22)

(23)

One can show that the above problem is equivalent to the following variational principle:

The functional

defined in the space HI) of all displacement functions vanishing on the boundary attains its
stationary value if and only if tf1 = <p0_ <pa, where <pa is the actual displacement function.

Indeed, taking into account the relations (3), (15) and (19) we arrive at the equation

which can be presented as

I· F(I/I+ Atp)- F(I/I) =-( Q*T\1m, tp"
,\--0() J\

aFa" =-Q*T.

(25)

(26)

Hence the requirement (aF7al/l) =0 is equivalent to the equilibrium condition Q*T =O.
The particular form of the constitutive law expressed by the Lagrangian-like function

imposes the uniqueness of the force function T corresponding to given displacement function
<p. Making use of this property one can formally express the force function Ta appearing in the
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conservation theorem (12) by the displacement function (22) in order to obtain a conservation
theorem expressed in terms of the displacement only. In the case where only boundary values
of the displacement function are known such substitution requires an effective solution of the
boundary value problem.

It will be shown in the sequel that the particular bilinear functional introduced by
Schapery[3] makes it possible to construct the Lagrangian-like function for the problem of
thermoelasticity. Analogous construction is also possible for other dissipative media charac
terized by a linear constitutive law.

It will be also shown that for the classical problem of elastodynamics one can construct
several Lagrangian-like functions corresponding to distinct bilinear functionals.

4. LINEAR CONSTITUTIVE LAW

N,)w w: s~all assume that the constitutive law is linear, i.e. the mapping of the flux function
U(x, t) into the force function T(x, t) is such that

(27)

for arbitrary flux functions U, Wand real numbers At. Az.
It can be shown that the functional 5£ for a linear constitutive law can be constructed as

5£( U) = ~(U, T( U» (28)

provided that the mapping T( U) is symmetric with respect to the assumed bilinear functional,
i.e. the equality

(W, T(U» '= (U, T( W» (29)

holds true for arbitrary flux functions U and W.
The symmetry condition (29) can be used as a criterion of usefulness of a bilinear functional

to construct the Lagrangian-like function. Namely for particular linear constitutive law we
restrict the class of bilinear functionals introduced above to those which make the mapping
T( U) symmetric (29). It follows from further considerations that the restricted class of the
bilinear functionals admits a simplified construction of the conservation theorems.

It should be emphasized that the symmetry (29) of the mapping T( U) with respect to the
bilinear functional (2) does not imply such symmetry with respect to the bilinear form, i.e. the
function [WoT(U)- UoT(W)](x,t) does not necessarily vanish in the region VX [0, to]. Even
for a simple form of the linear constitutive law

T(x, t) = CU(x, t) (30)

where C is a symmetric constant tensor, the symmetry (29) can be satisfied while the
skew-symmetric part of the bilinear form [W 0 C U](x, t) defined by

1
[WoCU]A(X, t)='2{[WoCU](x, t)-[CUo W](x, t)} (31)

does not vanish in V x [0, to]. This relation follows from the property of the bilinear form which
is not necessarily commutative.

The symmetry (29) of the mapping T( U) simplifies the construction of a conservation
theorem. Indeed, assuming that the skew-symmetric operator M satisfies the relation

T(MU) = MT( U) (32)

for arbitrary flux function U(x, t) and taking into account the symmetry (29) and the properties
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(Mcpa, Q* Ta) = ~{(MQcpa, P) +(Qcpa, MP)} - IBf
o
nQB[Mcpa 0 Ta](x, t)dt dB

-Iv IQ/[Mcpa 0 ra](x, t)I~O d V. (33)

Using the properties (6) of the operator M and the equilibrium condition (5) we arrive at the
conservation theorem in the form

fa fO n{MBnQcpa 0Ta]ex, t) - QB[Mcpa 0Ta](x, t)} dt dB

+Iv IM I nQcpa 0 Talex, t) - Q/[Mcpa 0 P](x, t)lfr dV = 0 (34)

where the actual force function ra is uniquely determined by the actual displacement function
cpa.

If the boundary and initial operators take the particular form of the multipli~ation of the
bilinear form by a constant vector then we can explicitly introduce the Lagrangian-like function
in~o the conservation theorem (34)

M BnQcpa 0 Ta lex, t) = MB[L( Qcpa)](x, t)

M I GQcpa 0 Plex, t) = M/[L( Qcpa)](x, t).

(35)

(36)

(38)

5. PARTICULAR BILINEAR FORMS

In order to construct the conservation theorems one can look for a skew-symmetric
operator in the form

ap aq ar a'
M = m\ axf + m2 ax~ + m3 ax) + m4 at'

where m = [mj, m2, m3, m4] is interpreted as a vector in four-dimensional space-time and p, q, r,
s are positive or negative odd integers (negative order of a derivative denotes appropriate
integral).

In our consideration we shall use only first order derivatives, namely we shall assume
p = q = r = s = 1. Hence the form (36) offers at most four operators M independent of each
other. Now we can use the concept of the energy-momentum function P(x, t) (see [1]) in order
to express the conservation theorem (34) in the form

IB fa m,njPrj(X, t) dt dB +Iv ImrPrix, t) Iff d V = 0 (37)

IB fO m4njP4j(x, t) dt dB + Iv Im4P«(x, t) I~o d V = 0

where the summation convention is used for the indices r, j = 1,2,3.
In the sequel we shall use four particular bilinear forms to carry out the constructions

proposed in previous sections. The first bilinear form, recommended by classical ther
modynamics,

[U 0 n(x, t) = U(x, t) . T(x, t) (39)

admits four skew-symmetric operators M independent of each other, i.e. the corresponding
operator M is represented by four non-zero components of the vector m =[mj, m2, m3, m4]'
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The second bilinear form, characterized by the convolution with respect to time,

[V 0 T](x, t) = U(x, t)· T(x, to - t) (40)

admits three non-zero components of the vector m = [mil m2, m3, 0]. Hence the eqn (38)
becomes trivial for this form.

The third bilinear form, characterized by the convolution with respect to x,

[ V 0 T](x, t) = V (x, t) . T(-x,.t) (41)

admits one non-zero component of the vector m = [0, 0, 0, m4]' Now the eqn (37) becomes
trivial.

The fourth bilinear form, characterized by the convolution both with respect to x and t,

[V 0 T](x, t) = Vex, t)· T(-x, to- t) (42)

does not admit non-zero components of the vector m = [0, 0, 0, 0]. Hence this form does not
offer any non-trivial conservation theorem generated by the considered class of operators M.

It should be noted that the third and fourth bilinear forms can be applied to a class of
regions V which are symmetric with respect to three axes of the coordinate system in the space
R3

•

6. ELASTODYNAMICS

The displacement function <,o(x, t) is here identified with the displacement Ui(X, t) of the
material points. For the first bilinear form (39) the flux takes the form

( ) _[Ui,i(X,t)]_[(alaXi)] ( )_Q ( )
U x, t = Uj(x, t) - (al at) Ui x, t = <,0 x, t

and the constitutive law is expressed by

T(x, t):; [ lTji(x, t) J= [eiikl 0] [U~I(X, t)]:; Cvex, t)
-Pi(X, t) 0 - Oik/1 Uk(X, t)

(43)

(44)

where lTij is the stress tensor, Pi the momentum vector, Cijkl the generalized Young modulus, p
the material density and Oij is the Kronecker symbol. Due to the symmetry of the mapping (44)
(see(29» with respect to the first bilinear form the Lagrangian-like function takes the classical
form

I
[L( V)J(x, t) = 2Vex, t)· C V(x, t). (45)

The energy-momentum function appearing in the conservation theorem (37), (38) is now
expressed by

Prj(X, t) == 8rj[L( V)](X, t)- [Ui,' 0 Cijk/Uk,il(x, t)

Pr4(X, t) == [Ui,r 0 PUi](X, t)

P4/X, t) -[Uj 0 CjkilUk.tl(X, t)

P44(X, t) [L( V)](x, t) + [Ui 0 pU;](x, f).
(46)

The natural boundary conditions (see eqns 19) imposed by the first bilinear form state that
the displacement function Ui(X,t) is prescribed on the boundary B x (0, to} as well as in the
region V at the initial t == 0 and final f = fo moments.

For the second bilinear form (40) the flux takes the form

f
Ui,i(X, t) j f (at aXil 1

V(x, t) :; Uj(X, f) = 1 Uj(x, t) :; Q<,o(x, t)

Ui(X, t)l (a2
/ at2

)

(47)
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and the constitutive law is presented as

UIj(X, t) Cjjlc/ 0 0
I - 0

I
T(x, t) l!5

"7.!j(x, t) 0 -8ikP2
1 1

0"2fj(x, t) 0 "2 8ucp [

Uk,/(X, tJ

Uk(X, t) • CU(x, t)

Uk(X, t)
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(48)

where h(x, t) is the inertia force.
The Lagrangian-like function corresponding to the second bilinear form can be expressed by

1
[L( U)](x, t) ="2 U(x, t) . CU(x, to - t). (49)

The energy-momentum function, appearing in the conservation theorem (37) takes the form

Prj(x, t) = 8rj[L( U)](x, t) - [u~r 0 Cjjk/Uk,/](x, t)

Pr4(x, t) = ~[U~r 0 PUj + u~r 0 PUj](x, t). (50)

The natural boundary conditions imposed by the second bilinear form state that the
displacement function Uj(x, t) is prescribed on the boundary B x [0, tol and that this function
together with its time derivative is prescribed in the region V at the initial moment t =O.

For the third bilinear form (41) the flux takes the form

[
U~jk(X' tJ [(a/aXj)(a/ aXk)]

U(x, t) == Uj(x, t) = 1 Uj(x, t) == (Qcp(x, t)
Uj(x, t) (a/ at)

and the constitutive law is presented by

(51)

1
0

1

[~"(.. 'J"2 bjjk(x, t) "2 Cjjk, 0

T(x, t) l!5 1 1 u,(x, t) == C U(x, t) (52)"2 bjjk,jk(X, t) "2 Cjj
k/ 0 0

- Pi(X,t) 0 0 -8up u,(x, t)

where the tensor bjjlc may be interpreted as the potential of stress (since Ujj = bjjk,k). Con
sequently b'jlc,Jt represents the body force.

The Lagrangian-like function corresponding to the third bilinear form can be presented as

1
[L( U)](x, t) = "2 U(x, t) C U(-x, t) (53)

and the energy-momentum function appearing in the conservation theorem (38) is expressed by

(54)
P44(X, t) = -[L( U)](x, t).
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In order to specify the boundary conditions for the third bilinear form we decompose the
boundary B into two disjoint surfaces BI and Bz such that for arbitrary x belonging to BI we
have: -x belongs to Bz. Now we can propose a natural boundary condition in the form: U;(X, 0)
and Ui(X, to) are prescribed in V and Ui(X, t) together with nkui.k(X, t) are prescribed on the
surface BI x [0, to].

For the fourth bilinear form (42) the flux takes the form

U(X, t) == Ui(X, t)

u,(x, t)

and the constitutive law is presented by

Ui(X, t) == Qcp(x, t) (55)

1 1
2, bijk(x, t) 0 2,Cjjkt 0 U/,kj(X, t)

1 .. 1 1
T(x, t) == 2,{bjjk,jk +/;)(x, t) 2,Cjjkl 0 2,5i/p u/(x, t) == CU(x, t),

1 1
2, /;(x, t) 0 2,5,/p 0 iit(x, t)

(56)

The boundary conditions for the fourth bilinear form can be established as follows: the
functions u,(x,O) and Ui(X, 0) are prescribed in V and the functions Ui(X, t) and nkui,k(X, t) are
prescribed on BI x [0, t].

7. THERMO ELASTICITY

The displacement function cp(x, t) is here composed of the displacement of the material
Ui(X, t) and the entropy displacement Sj(x, t). Applying the second bilinear form we can express
the flux as

IUj)X, t~ 5ik5j/(a/ ax/) 0
Sk,k(x, t) 0 (a/axd
Sj(x, t) 0 5ik [Uk (X, t)]U(x, t) ==
Si(X, t) 0 5jk(a/ at) Sk(X, t) == Qcp(x, t), (57)

Ui(X, t) 5ik 0

ii/(x, t) 8ik (az/atz) 0

The corresponding constitutive law takes the form

ai/x, t) C;jkl 1/f3ij 0 0 0 0 Uk./(x, t)
-8(x, t) 1/f3k/ 1/ 0 0 0 0 Sk,k(x, t)

~gi(X, t) 0 0 0
I

0 0 Sk(X, t)2,Xik

I
0 0

1
0 0 0 Sk(X, t)2, g,(x, t) 2,Xik

1 .. I
Uk(X, t)"ifi(x,t) 0 0 0 0 0

"i
8jkP

1 I
0 ii/(x, t)"ifi(x, t) 0 0 0 0

"i 8ikP

(58)
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where (J is the increment of the temperature above the reference temperature 00, gj is the
temperature gradient, Pj; is the coefficient related to thermal expansion, kij is the coefficient of
heat conduction, c is the heat capacity and

Ooe' C fJ.fJ. _00
11 =c' ijkl = ijlcl +11,..,ijIJkb Xik - k

ik
' (59)

According to the notation used throughout the work we express the constitutive law (58) in
the form T(x, t) =CU(x, t). Then the Lagrangian-like function for the thermoelastic problem
can be presented in the form

I
[L( U)](x, t) = 2U(x, t)· C U(x, to - t). (60)

The corresponding energy-momentum function appearing in the conservation theorem (37) can
be expressed by

Prj(X, t) = 8rj[L( U)](X, t) - [U~r 0 Uij - Su 0 O](X, t)

Prix, t) =-~[U~r 0 PUi + U~r 0 PUj + S~r 0 XjjS;](X, t) (61)

where the stress Uij and the temperature increment °are determined by the flux U with the
equality (58).

The natural boundary conditions corresponding to the second bilinear form (40) are: the
functions Uj(x,O), Uj(x,O) and Sj(x,O) are prescribed in the region V and the functions Ui(X, t)
and Sj(x, t) are prescribed on the boundary B x [0, to].
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